
An Approach for Cross-Model Semantic
Transformation on the .NET Framework

Artur Boronat, José Á. Carsí, Isidro Ramos, Julián Pedrós

Department of Information Systems and Computation
Technical University of Valencia

Camí de Vera s/n
46022 Valencia (Spain)

{aboronat | pcarsi | iramos | jpedros}@dsic.upv.es

ABSTRACT
Model-Driven Development is a suitable approach for improving productivity and quality in the software
development process by raising the level of abstraction of software artifacts from code to models. In this
context, code generation has traditionally been the star feature. Working on models also provides more reusable
solutions to problems that have to be solved in an ad-hoc manner using the .NET technology: interoperability
between applications, integration of applications, legacy system recovery, software evolution, maintainability,
etc. One mechanism for dealing with models is model transformation. Although several tools follow this
approach to generate code that targets the .NET platform, there are no tools based on .NET technology that
provide model manipulation such as transformations. In this paper, we present a platform that permits the formal
representation of models and an operator to transform models in a declarative way. This platform has been
implemented using the F# functional programming language, presenting its advantages over an implementation
using an imperative programming language such as C#. The platform has been integrated into the Visio
modeling environment by means of an add-in to deal with formal models through visual metaphors (visual
notation). To our knowledge, this solution is the first approach for dealing with cross-model semantic
interoperability on the .NET technology.

Keywords
Model-driven development, model transformation, graphical notation, MS Visio 2003, F#, Office managed
COM add-in, cross-language interoperability.

1. INTRODUCTION
Model-Driven Development (MDD for short)
[Sel03] is a suitable approach to combat the
complexity of software development by means of
principles such as abstraction and modularity, which
improve the quality, reuse, and scalability of
software artifacts. This discipline also improves the
productivity and quality in the software development
process to obtain automatically error-free code that is
easy to maintain. Following this approach, a software
artifact is modeled at a high level of abstraction

where technical details are not as important as
semantics. The structure and semantics of a software
artifact are modeled by using an ontology or
metamodel (a vocabulary that provides constructs to
specify a model in a determined manner). A
metamodel can be domain-independent such as
UML, or domain-specific, taking into account
specific types of software systems, such as banks,
electronical circuits, business modeling, etc.
In accordance with [Cza00], the MDD approach
based on UML-like metamodels is called Object-
Oriented Analysis and Design, while the MDD
approach based on domain-specific metamodels is
called Domain Engineering. Microsoft has shown a
growing interest in the MDD discipline by adding
designers to the Visual Studio environment in order
to build software artifacts by means of models. This
technology should be expanded to cover domains of
interest to their customers, such as code
visualization, business modeling, etc., thereby

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

.NET Technologies’2005 conference proceedings,
ISBN 80-86943-01-1
Copyright UNION Agency – Science Press, Plzen, Czech Republic

applying Domain Engineering from a commercial
standpoint [Coo04].
In MDD, models defined by means of metamodels
are usually transformed into code, providing the final
application that can be directly compiled and
executed on a specific platform, such as .NET. There
are lots of tools that provide code generation based
on models in the .NET world, called model
compilers: from visual modeling environments (such
as Visio, Rational XDE [Rat] among others) to
development environments (such as the Visual
Studio .NET).
However, generating code from models forces the
programmer to work on code in order to face well-
known problems in the software engineering field:
round-trip, application integration, legacy system
recovery, refactorization, software evolution,
maintainability, etc. These problems can be solved at
a more abstract level by dealing with models directly,
obtaining the same advantages that the MDD
discipline obtains for the software development
process. This is the point where model
transformations come into play [Sen03]. To provide
support for model transformations, two main issues
have to be taken into account: model representation
to structure the information in some accessible
manner and a transformation mechanism to
manipulate such models. Although this issue is
becoming well-known in the research field [Cza03],
to our knowledge, there are no tools based on the
.NET technology to achieve transformations of this
kind. A solution of this nature would improve the
productivity and the quality in the integration of
.NET-based applications at a high level of
abstraction, rather than just benefiting from the
cross-language interoperability that the .NET
Framework provides at code level. Therefore, a
solution of this nature would achieve cross-model
interoperability.
In this paper, we provide a solution along these lines.
We present a mechanism that takes advantage of the
MS Visio modeling tool in order to describe the
structure of visual models in a formal manner. This
mechanism uses a platform to represent and store
software artifacts in four layers, where metamodels
and models are taken into account. Models defined
on the platform can be transformed in a declarative
fashion by using the platform operator generate,
which permits the translation of a model between
different metamodels.
This platform has been developed using the
functional language F# [Fsh]. Taking into account its
advantages over conventional OO languages such as
C#, models are formally described in an algebraic
fashion.

Our solution takes advantage of the .NET cross-
language interoperability and the Office extension
mechanism by means of managed COM add-ins. It
extends the Visio tool by using the most suitable
language in each context: F# to implement the
definition of formal models and their manipulation,
and C# to integrate this functionality into the Visio
tool.
The structure of the paper is as follows: in Section 2,
we discuss and compare the C# and F# programming
languages, evaluating their suitability in our solution;
Section 3 presents a platform that enables the
definition of models in an algebraic fashion; Section
4 presents the add-in that integrates this platform into
the Visio modeling environment, enabling the
manipulation of formal models by means of
graphical metaphors (graphical notation); Section 5
describes the F# definition of the model
transformation mechanism that is provided by the
platform; finally, Section 6 summarizes our
contributions.

2. F# versus C#
F# is a functional programming language that targets
the .NET platform. F# has been developed at MS
Research Cambridge and is a version of the Caml
programming language [Cah00], which belongs to
the ML languages family. F# is well integrated in the
Visual Studio environment1 and provides certain
features that are inherited from Caml, which make it
interesting for our purposes.

F# is based on the lambda-calculus model [Rea93]
by means of a strict (eager) evaluation strategy.
Therefore, it permits the definition of a program
independently from the evaluation strategy used, that
is without mixing functionality and control logic as is
necessary in C#.

F# provides richer constructs to declare types like
sum types, among others. A sum type permits the
definition of a type by means of constructor patterns,
each of which may have arguments. Sum types allow
us to describe the signature of an algebraic
specification [Ehr85], where the name of the type is
the sort, and the constructor patterns are the
constructors of a sort. This comparison allows us to
deal with models from an algebraic point of view,
where semantics of models can be described formally
by means of Abtract Data Types. This feature is not
feasible in C# intuitively, although it can be
simulated in the same way that such constructors are
invoked from C# code by means of static methods.

1 Although we used F# version 0.6.4.1 for this solution.

F# provides a conditional pattern matching
mechanism that enables the definition of functions
over sum types in an intuitive way by applying a
pattern to each constructor in order to perform a task.
This mechanism can be simulated in a more complex
way in C# by means of the switch statement and the
addition of if statements inside each case of the
switch statement.

The F# compiler infers the types of the declaration of
a function statically (the types of its arguments and
the type of its closure, i.e. the type of the returned
value), so that these types do not have to be indicated
in the definition of the function. This feature makes
the definition of F# programs easier.

As all values are functions in F#, we can use lists of
functions whenever we need them, rather than using
delegates, as it happens in C#. This also provides
parametric polymorphism that is used to provide
some parametric functions that deal with lists without
knowing the types of their elements: map to apply a
function to the elements of a list, find to search the
elements of a list that validate a condition, exists to
know if some elements of a list validate a condition,
etc. This feature, called generics, has not been added
to the current release of the .NET Framework,
although it will be added to the next release [Yu04].

Although F# is a functional language, it also
provides imperative features such as references
(pointer to a value), which allow us to manipulate the
memory state whenever necessary for the sake of
efficiency. Furthermore, the last and the most
important feature of F# is its full interoperability
with languages that target the .NET platform, such as
C#, by means of the ILX extensions [Sym01] to the
IL language.

All these considerations have encouraged us to use
F# for the implementation of our solution to deal
with models from a formal standpoint, on the
grounds that we can use C# to integrate our solution
to tools based on the .NET technology, such as the
Visio modeling environment.

3. ALGEBRAIC REPRESENTATION
OF MODELS BY MEANS OF F#
Our approach constitutes a platform that uses several
metadata layers to describe any kind of information.
In our work, we consider software artifacts in four
abstract layers (as shown in Figure 1):
− The M0-layer collects the examples of all the

models, i.e., it holds the information that is
described by a data model of the M1-layer.

− The M1-layer contains the metadata that describes
data in the M0-layer and aggregates it by means of

models. This layer provides services to collect
examples of a reality in the lowest layer.

− The M2-layer contains the descriptions
(metamodels) that define the structure and
semantics of the models located at the M1-layer.
A metamodel is an “abstract language” that
describes different kinds of data.

− The M3-layer is the platform core, containing
services to specify any metamodel with the same
common representation mechanism. It is the most
abstract layer in the platform. It contains the
description of the structure and the semantics for
metamodels. This layer provides the “abstract
language” to define different kinds of metadata.

The core of the prototype is an algebra that provides
a set of sorts and constructors to define models and a
set of operators to manipulate them. To implement
this algebra, we have used the F# programming
language for two main reasons: to bring a formal
model transformation approach closer to an industrial
programming environment, such as .NET, and to
benefit from the functional programming advantages
presented above.

Figure 1. Graphical representation of the four-
layered platform.

An Algebra for Representing Models
The algebra aims to represent models of any kind as
algebraic terms in order to automate model
transformation tasks in a precise, formal way.
Achieving this objective implies choosing a basic
specification language that permits us to describe any
piece of data.
We have developed a platform based on this algebra
that permits the representation of software artifacts in
the four meta-layers explained above. Four main
sorts permit the definition of a model as a term in the
algebra:
1. Concept

A concept represents an entity that can be
described by means of properties. The constructor
of this sort is defined in F# notation as follows:

 Concept = NilConcept
| Concept of (Concept * string)

M3 Schema

UML
metamodel

relational
metamodel

XSD
metamodel

Clase1

Clase2

1

*

DC1
Clase1

Clase2

1

*

DC1
-c odigo : int
-fecha : Date

Factura
-descripcion : string
-horas : float

LineaFactu ra
-codigo : int
-descriptor : string
-precio/hora : f loat

Tarea

-dni : string
-nombre : st ring

Propietario -codigo : int
-situacion : string
-desc ripcion : string
-tamaño : float

Propiedad
-codigo : int
-nom bre : str ing
-dni : st ring
-telefono : str ing

Trabajador

1 *
0. .* 1

0..*

1..*

0..*

1

1 0..*

DC2
-c odigo : int
-fecha : Date

Factura
-descripcion : string
-horas : float

LineaFactu ra
-codigo : int
-descriptor : string
-precio/hora : f loat

Tarea

-dni : string
-nombre : st ring

Propietario -codigo : int
-situacion : string
-desc ripcion : string
-tamaño : float

Propiedad
-codigo : int
-nom bre : str ing
-dni : st ring
-telefono : str ing

Trabajador

1 *
0. .* 1

0..*

1..*

0..*

1

1 0..*

DC2

Inv o ice

P K code

 da te

Invo iceLine

P K in vo ice_co de
P K n um ber

 p rice
 h ours
FK 1 c ode

relational
schema

XML
schema

cod igo : i nt = 0
fecha : D ate = 01/12 /2004

F1 : Factura
descripcion : string = ""
ho ras : floa t = 2

LF1 : L ineaFactu ra

descripcion : string
horas : float = 2,5

LF2 : L ineaFactura

cod igo : int = 002
descriptor : string = poda
precio /hora : floa t = 7

T1 : Tarea

Objects Tuples XML document

La
ye

r M
3

La
ye

r M
2

La
ye

r M
1

La
ye

r M
0

<document>
<item>
…
</item>

</document>

where NilConcept represents a null concept term;
the first argument of the constructor Concept is a
term of the sort Concept that represents its
metaconcept in the next upper abstraction layer,
and the second argument is its identifier.

2. Property
A property is a relationship that relates either a
concept or a property (subject of the property) to a
concept (the object of the property), following the
RDF philosophy to describe metadata [W3C].
Such relationships are specified by means of the
Property sort.

We express the constructor of this sort in F#
notation as follows:

where NilProperty represents the null property term
and the arguments of the constructor Property are the
following elements in order of appearance:

− Parent property indicating its type.
− Identifier of the property.
− Minimum cardinality of the property that

indicates the minimum amount of instances of
the range concept, which must be related to the
subject node.

− Maximum cardinality of the property that
indicates the maximum amount of instances of
the range concept that can be related to the
subject node.

− Subject element that receives the property. This
can be a concept or another property, because a
property may involve other properties.

− Object element that constitutes the value of the
property. A property cannot be the object of
another property on the grounds that it does not
provide additional information.

3. Schema
In our context, a schema term represents a
collection of concepts and properties that describe
such concepts.

4. Level
A level term represents a layer in the platform.
Four terms of this sort constitute the four-layer
structure of the platform. The term M3-layer
represents the most abstract layer in the platform
and contains a basic vocabulary to define
metamodels at the M2-layer, i.e. a simplified
meta-metamodel. This schema contains the term
Concept and the term Property; the latter relates
two concept terms, constituting the minimal
structure that we use to represent a model at a
lower layer. The four layers of the platform are
defined as values that can be accessed by means
of references (pointers to a value). This simplifies

the definition of transformation rules and
enhances efficiency.

For instance, the Relational Metamodel is a schema
term that contains the concepts and properties that
constitute the terminology to define a relational
schema, as shown in Figure 2. For instance, Table
and Column are represented by means of concept
terms, which are related to each other through a
property table/Column in the relational metamodel at
the M2-layer. This metamodel allows the definition
of the concept Invoice as a table. In an identical way,
the concept Code is defined as a column, which is
related to the table Invoice by means of an instance
of the property table/Column, i.e. by means of the
invoice/Code property.

Figure 2. Definition of metamodels and models on

the platform.

4. VISIO AS A VISUAL
ENVIRONMENT FOR DEALING
WITH ALGEBRAIC MODELS
Taking into account the four-layered platform based
on the functional implementation of the presented
algebra, we have developed an add-in for MS Visio
2003, called Platform Integrator. This add-in permits
the association of a graphic metaphor with a formal
metamodel in the Visio modelling environment and
the automatic definition of its models as algebraic
terms.
The customization of the Visio modeling visual
environment is performed by means of add-ons, i.e.
sets of stencils that provide the graphical information
needed to define the graphical notation for a
metamodel. To extend the tool, a type of module,
called an add-in, is used to add functionality. Given
the easy extension that such add-ins provide by
means of managed COM (Component Object
Model), Visio is the selected tool to embed our
model repository. The formal definition of models,
which our add-in provides, allows us to transform
models as we present in the following section, rather
than merely defining the models graphically.

Property = NilProperty
| Property of (Property * string * Cardinality *
Cardinality * Node * Concept)

Relational
Schema

Concept

Table Column

Invoice Code

table/Column

invoice/Code

Property

M2

M3

M1

Relational
Metamodel

is_instance_of

Outside the Add-in
The add-in architecture is divided into three layers:
the interface that graphically represents metamodels
and models; the middle layer that permits the
association of such graphics to algebraic
representation of models; and the persistence layer
that stores all the information.
In the middle layer, the module Platform Integrator
enables the definition of associations between the
graphical elements of the interface of Visio and the
algebraic terms that define software artifacts in the
four-layered platform. Such associations are stored in
the same platform as instances of UML classes at the
M0-layer by means of the UMLSupport library.
The persistence layer consists of two types of storage
units: the one provided by Visio and the one
provided by model repository of the platform.
In Visio, graphical models are stored by means of
two types of files: .vss files that store the model
defined in the shapesheet, and .vst files that provide
the templates with masters (stencils), which enable
the definition of shapes in the shapesheet. Visio
provides several templates with several kinds of
masters to define a large variety of models by
default. Nevertheless, a user can define new
templates to define other types of models.
The four-layered platform stores the information in a
RDF repository on the grounds that the concepts and
properties used in the platform are equivalent to RDF
resources and properties, respectively. The repository
used is Redland [Bec01], which we have embedded
in a visual studio project and compiled on the .NET
platform by means of the managed C++
programming language. In this repository, we store
schemas that belong to any layer of the platform, and
we store associations between graphical elements of
the modeling environment and algebra terms.

Inside the Add-in
The graphical elements of the Visio interface are
related to platform elements by means of the module
Platform Integrator. To present both the definition of
a graphical metaphor related to a metamodel and the
definition of formal models by means of this
association, we focus on the M2-layer and the M1-
layer of the platform. These layers store information
of metamodels and models, respectively. In this way,
a schema of the M2-layer is related to a Visio stencil,
while a schema of the M1-layer is related to a Visio
shapesheet. To graphically represent the concepts
and the properties that constitute a metamodel at the
M2-layer, we use the masters that define the chosen
stencil. In the case of the graphical representation of
elements that constitute a model at the M1-layer, we

use shapes that are defined by means of masters of a
stencil.
The association mechanism that relates a formal
model to a graphical representation has been
modelled in Figure 3 using UML notation. In this
model, the SchemaWrapper class contains the
information needed to relate a schema to its visual
representation, while the class NodeWrapper
contains the information that relates a concept or a
property to a specific image. Specializations of both
classes identify whether a schema is a metamodel
(GraphicViewWrapper) or a model
(GraphicModelWrapper), and whether either a
concept or a property is a metamodel element
(GraphicPrimitiveWrapper) or a model element
(PictureWrapper). In the case of a metamodel, an
instance of the GraphicViewWrapper class relates a
schema of the M2-layer to a stencil, and an instance
of GraphicPrimitiveWrapper class relates a node of
the schema to a master. In the case of a model, an
instance of the GraphicModelWrapper class relates a
schema of the M1-layer to a shapesheet, and an
instance of the PictureWrapper class relates a node
of the schema to a shape.

Storage of UML Software Artifacts
The association between Visio graphical elements
and platform elements (defined in the UML class
diagram in Figure 3) is stored in the same four-
layered platform. In this way, the platform is used as
an object-oriented repository on the grounds that it
enables both the definition of UML models at the
M1-layer and the definition of their instances at the
M0-layer.

Figure 3. UML Model of the association
mechanism between graphical elements and

algebraic terms.
To achieve this, we have specified part of the UML
metamodel as a schema at the M2-layer of the
platform, taking into account classes and
associations. The class diagram in Figure 3 has been
specified in a schema at the M1-layer of the platform
as an instance of this UML metamodel. Therefore, to

+Id : string
+GraphicSchemaId : string
+GraphicSchemaRepository : Repository
+MOMENTLayerId : URI
+MOMENTSchemaId : URI

SchemaWrapper

+Id : string
+GraphicNodeId : string
+MOMENTNodeId : URI

NodeWrapper

1 *

GraphicViewWrapper GraphicPrimitiveWrapper

GraphicModelWrapper PictureWrapper

1 *

1

*

1

*

define associations between elements of the platform
and Visio graphical elements, a schema can be
defined at the M0-layer of the platform by
instantiating the classes that constitute the model at
the M1-layer.

Definition of Graphic Metaphors for
Metamodels
To define a metamodel by means of Visio, we
associate a schema of the M2-layer of the platform to
a stencil. Then, each of its masters is related to a
node of the schema by means of the interface in
Figure 4, completing the graphical metaphor related
to the metamodel. The formal metamodel can be
directly defined on the platform by means of the
Visio interface; it can also be loaded from the
platform.
To define a master in the interface shown in the
Figure, an association between a metamodel of the
platform and a stencil must be selected. Then, a
master of the stencil and a node of the schema are
selected and related by means of a new association.
After this, the hidden properties of a node (i.e. the
properties that are not related to a master directly)
can be accessed. They are shown in the list that
appears at the bottom of the interface, and they can
also be navigated recursively by means of the tree,
placed on the left part of the interface.
Once a metamodel is graphically defined in Visio, it
can be used to define visual models by means of the
drag-and-drop mechanism, by dropping masters of
the stencil onto the shapesheet. We enrich this
mechanism so that the shape is not only graphically
defined in the shapesheet but also its contents are
defined in the platform. This functionality is
embedded in the Platform Integrator module,
providing this functionality automatically in a
transparent manner to the user. Thereby, we not only
define a graphical model but also provide the
semantic information related to a metamodel.

Therefore, we can define formal models in a visual
manner so that they can be manipulated by means of
transformations as we explain in Section 5.

5. TRANSFORMATIONS
The operator generate permits the translation of a
model of a specific metamodel into a model of a
different metamodel. The semantics of the operator is
defined denotationally by means of the pattern
matching mechanism of F#.
The operation generate defines an evaluation
strategy operationally (by means of the pattern
matching mechanism) in order to enable the
definition of transformation rules in a declarative
manner. In this way, transformation rules are defined
like axioms that do not take into account the rule
evaluation strategy embedded in the operator
generate. In this section, we introduce the likeness
relation2, which enables the definition of
transformation rules based on metamodels. Then, we
describe the structure of a transformation rule.
Finally, we define the operational semantics of the
operator generate.

Semantical Relationships between
Metamodels
In our approach, transformations are based on
metamodels. Applying a transformation to a source
model involves two metamodels: a source metamodel
that describes the structure and semantics of the
source model, and a target metamodel that provides
the structure and semantics for the new model to be
generated. Two types of transformations can be
distinguished taking into account the target
metamodel:

2 We have chosen the name likeness instead of

equivalence, on the grounds that the equivalence relation
is defined between elements of different metamodels,
which cannot be equal.

Figure 4. Interface to graphically define concepts and properties of a metamodel.

− Intra-metamodel: when both the target and the
source metamodels are the same. In this paper,
we do not discuss this type of transformation.

− Inter-metamodel: when both the target and the
source metamodels are different.

By basing our transformations on metamodels, we
can specify them from an abstract point of view
taking into account the metainformation that
constitutes both the source and the target
metamodels. This way, transformation rules can be
viewed as patterns that can apply to any model of the
source metamodel. To define such rules, we
introduce the likeness relation between elements of
two metamodels.
The likeness relation is based on mappings between
the elements of both the source and the target
metamodels. A mapping is a property that is an
instance of a property, called Likeness, defined at the
M3-layer. A mapping relates a concept of the source
metamodel to a concept of the target metamodel. For
example, indicating that a Table in the relational
metamodel is like a Class in the UML metamodel. A
set of mappings conforms a likeness relationship
indicating that the concepts, which participate in
these mappings, represent a similar semantic
meaning in their respective metamodels.
A likeness relationship between elements of two
metamodels may involve more than one element of
either the source or the target metamodels. Thus, we
distinguish between:
− Simple likeness relationships: specified by means

of only one mapping.
− Complex likeness relationships: specified by a set

of mappings involving several elements from
either the source or the target metamodels. For
example, to define an equivalence relationship
between a foreign key of the relational
metamodel and an aggregation of the UML
metamodel, we have to relate the foreign key, the
unique constraint and the not null value constraint
concepts to the aggregation concept. This is
because these three concepts of the relational
metamodel provide the necessary knowledge to
define an aggregation between two classes in the
UML metamodel, such as the cardinalities of the
aggregation.

A likeness relation between two metamodels is
defined as the union of all likeness relationships
established between the elements of both
metamodels. As a first approach to provide cross-
model semantic interoperability on the .NET
platform, we only focus on simple likeness
relationships.

Transformation Rules
The operator generate is applied to a schema of the
source metamodel and defines a new schema of the
target metamodel. To achieve the transformation, this
operator is based on a likeness relation defined
between both the source and the target metamodels.
By means of this relation, the operator knows what
should be generated from a set of concepts of a
source model.
To process the elements of the source schema, the
operator generate makes use of transformation rules
defined declaratively. Each one of them is divided
into two functions: a condition and a body. When a
group of elements of the source model is processed,
the condition checks their properties in order to
select which generation function should be applied.
These conditions take into account the order of
precedence that exists between the concepts of a
specific metamodel when this order is used to define
a model. For instance, when we define a relational
schema, we cannot define a column if the table that it
belongs to is not defined previously. On the other
hand, the body of the transformation rule involves
the definition of concepts and properties in the target
schema.
The operator generate automatically generates
models among different metamodels taking into
account a set of transformation rules, which are
applied following a specific evaluation strategy. The
set of transformation rules is defined independently
of the evaluation strategy chosen. To achieve this
issue, all the transformation rules must have the same
declaration so that the operator generate knows how
to apply them. By declaration, we mean the
declaration expression of a function in a F# interface
(.mli), which involves the symbol that identifies the
function value, the types of the arguments and the
type of the function value (i.e. the type of the
closure). Therefore, we denote the declaration
expression of a function as follows:

This is the value declaration inferred statically by the
compiler where val is a reserved construct that
indicates the declaration of a value; function_name is
the symbol that identifies the function; arg1_type ->
… -> argn_type are the types of the argument list of
the function; and closure_type is the type of the
closure (which is viewed as the type of the returned
value in imperative programming).
As a transformation rule is divided into a condition
function and a body function, we present their
declarations in the following subsections.

val function_name :
 arg1_type -> … -> argn_type
-> closure_type

5.1.1 Condition function
A condition function is the mechanism that indicates
when a transformation rule can be applied. There is
one, and only one, condition function for each
function body. This means that a condition can
indicate the suitability of only one transformation
rule in a specific context, although many
transformation rules can be applied to the same
group of elements of a source model. The declaration
expression for a condition function is as follows:

where condition_name is a symbol that identifies the
condition, the first argument is the source schema to
be translated, and the second argument is the current
node of the source schema to be translated.
The condition function checks wheter or not the
specified node validates a set of requirements in
order to determine if it can be translated into the
target schema by means of the body function of the
transformation rule. Finally, the closure of the
condition function is a Boolean value indicating the
suitability of the transformation rule that contains the
condition.

5.1.2 Body function
The body function of a transformation rule
materializes a likeness relationship, defined between
elements of both the source and the target
metamodels. This materialization involves both the
definition of new elements into the target schema and
specific mappings between the elements of the
source schema, which are involved in the
transformation rule. Such mappings provide support
for traceability. Given a transformation process
between two models, traceability [Got94] enables the
identification of elements that are related by means
of the application of a transformation rule and that
belong to different models. Traceability support
enhances mechanisms such as change propagation
and round-trip between models.
To explain the semantics of the operator generate,
we use the generation of a UML model from a
relational schema as an example. The materialization
of a likeness relationship at the M1-layer (between
models) is obtained by four steps, shown in Figure 5:
1. The concept is reified in its metaconcept; that is, if

the concept to be processed is the table Invoice,
we obtain the metaconcepts Table of the relational
metamodel.

2. Once we know the corresponding metaconcept of
the source metamodel, we navigate the likeness
relationship that relates it to a concept of the target
metamodel. In the case of a table of the Relational

Metamodel, we obtain the concept Class of the
OO Metamodel.

3. The operator generate instantiates the concept of
the target metamodel, which becomes a
metaconcept for its instance, i.e., the concept
Class of the OO metamodel becomes the
metaconcept for its instance OO-Invoice. The new
concept, which has been generated in the new
target schema at the M1-layer, is similar to the
original concept in step 1, through the likeness
relationship that we have defined before.

4. Finally, the operator instantiates the likeness
relationship defined at the M2-layer between the
Metaconcept of the source Concept and the
Metaconcept’ of the new generated Concept’. The
instantiation defines a new mapping in the
traceability schema at the M1-layer, which is a
property that has the source Concept as domain
and the target Concept’ as range.

Figure 5. Description of the transformation
process

The declaration of a body function is as follows:

where body_name is the symbol that identifies the
body function, the first argument is a schema that
contains the specific mappings between elements of
both the source and the target models, and a node is
the element of the source model to be translated. A
body function knows the source and the target
models by means of the mapping schema, which
contains this information.
The type of the closure of a body function applied to
a mapping schema and a node is the unit type3. A
body function carries out side effects by accessing
the layers of the platform (term of type Level) by
means of references to them. Although these side
effects decrease the level of abstraction of our
functional approach, they avoid having to pass a
whole layer as an argument for each transformation
rule in order to improve efficiency. Side effects

3 This type describes a set which possesses only a single

element, which is denoted by (). This means that this
function simulates the notion of procedure, just as the
type void does in the C language.

val condition_name : Schema -> Node
-> bool

val body_name : Schema -> Node
-> unit

Invoice

source model

Table

source metamodel

M2-layer

M1-layer

Class

target metamodel

likeness mapping

target model

OO-Invoice
likeness instance

mapping

traceability model

Likeness relation

generated models

➀

➁

➂

➃

produced by a body function involve the insertion of
new elements into the target schema and new
mappings into the mapping schema, both of which
are located at the M1-layer. To understand the
application of a transformation rule in more detail see
[Bor04].

The Operator generate
The operator generate carries out the evaluation of a
set of transformation rules on a source model, which
is defined at the M1-layer of the platform. This
obtains a new target model and a traceability model
between the elements of the source models and the
elements of the new generated model. The generated
models are also defined at the M1-layer, as shown in
Figure 5. The operator generate is a function whose
declaration is as follows:

where the first argument is a list of pairs of functions,
in which the first element is a condition function and
the second is a body function (i.e. each pair is a
transformation rule); the second argument is the
name of the source model placed at the M1-layer; the
third argument is the name of the schema that
contains the likeness relationship between the source
and the target metamodels (i.e. the schema that
provides the likeness relation); and the fourth is the
name of the new target schema to be generated. This
function returns a Boolean value indicating whether
or not the model transformation has been performed
correctly.
The evaluation process carried out by the operator
generate is split into three steps: initialization of new
schemas at the M1-layer, solution search, and
transformation.
First, the operator defines two empty schemas at the
M1-layer of the platform:
− Definition of the traceability model.
− Definition of an empty target schema as instance

of the target metamodel with the name specified
as the fourth argument. The target metamodel is
known by means of the model of likeness
mappings of the M2-layer, which is specified as
the third argument.

Second, the operator searches for a solution for the
source model transformation. This solution consists
of a list of ordered nodes of the source model. The
application of transformation rules to the ordered
nodes produces the target schema. This step is
needed because F# does not provide any mechanism
to support the evaluation of the nodes of a schema in
an automated and intuitive way. This inconvenience

is due to the definition of a schema as a list of nodes,
or even as a set. In other languages, this problem is
avoided by means of a backtracking mechanism,
such as in CLIPS [Cli], or by means of the
commutativity property, such as in the algebraic
language Maude [Cla02]. A solution is reached when
all the nodes of the source model, whose parent
participates in a likeness relationship in the specified
likeness relation, have been added to the solution list.
In the case that no solution is found, the
transformation process is stopped and the operator
returns a false value.

Figure 6. F# definition of the apply_axiom
function.

Last, the list of transformation rules given as first
argument is applied to the nodes of the solution list
provided by the second step. The application of
transformation rules is reached by means of the
apply_solution function, which uses the pattern
matching mechanism of the F# programming
language, as shown in the code in Figure 6. The
apply_solution function is recursive (indicated by the
construct rec) and applies the apply_rule function to
the first node h (head) of the list. This function
searches for a suitable transformation rule in the list
by means of its respective condition function, and
applies the body of the rule to the node h. It inserts a
set of nodes into the target schema and inserts the
corresponding mappings into the traceability schema.
To transform the entire list of nodes of the source
model, the apply_solution function is applied to the
rest of nodes of the solution list t (tail) recursively.
When no node is left, the transformation is
concluded.
The function generate produces side effects due to
the application of transformation rules to the
elements of the source model. These side effects are
changes to the state of the M1-layer, which involve
the addition of the generated target model and the
traceability model to the M1-layer.

6. CONCLUSION
In this paper, we have presented a solution for
transforming models by means of the Visio modeling

val generate :
 (bool * unit) list ->
 string -> string -> string
-> bool

let rec apply_solution list_solution_concepts
list_transformation_rules sch_m1_source
sch_m1_mappings =
 match list_solution_concepts with
 | [] -> true
 | h::t ->
 let _ = apply_axiom
 list_transformation_rules
 sch_m1_source sch_m1_mappings h
 in
 apply_solution t list_transforamtion_rules
 sch_m1_source sch_m1_mappings

environment following a MDD approach. To achieve
this, we built a platform that permits the definition of
software artifacts following a four-layered approach,
which involves metamodels and models, from an
algebraic point of view. The platform provides a
mechanism to transform models in a declarative way
between two metamodels. This mechanism is
embodied by the operator generate that receives a list
of transformation rules that are applied to a source
model in order to translate it into a model of a target
metamodel. The application of a transformation
provides support for traceability between the source
model and the generated one.
The platform has been implemented with the F#
programming language. We have also discussed its
advantages over other languages that target the .NET
platform, such as C#.
The platform has been integrated into the Visio
modeling environment by means of an Office
managed COM add-in. This allows us to deal with
formal models in a visual manner through graphical
metaphors. The platform also acts as a repository of
formal models. This feature has been used to store
the associations between the graphical elements of
the Visio interface with the formal definitions stored
in the platform, in a UML-based manner.
To our knowledge, this is the first approach to
support cross-model semantic interoperability from a
modeling environment based on .NET technology.

7. ACKNOWLEDGEMENTS
This work was supported by the Spanish
Government under the National Program for
Research, Development and Innovation,
DYNAMICA Project TIC 2003-07804-C05-01, and
the National Project PBC-03-00 “Methodologies of
dynamic user interfaces development”.

8. REFERENCES
[Bec01] Beckett, D. The Design and Implementation

of the Redland RDF Application Framework. 10th
WWW Conf. May 2-5, 2001, Hong Kong.

[Bor04] Boronat, A., Ramos, I., Carsí, J. Á.
Automatic Model Generation in Model
Management. Springer-Verlag GMBH.
Proceedings of CIT 2004. India, 2004.

[Cah00] Cahilloux, E., Manoury, P., Pagano, B.:
Developing Applications With Objective Caml,
Éditions O’Reilly, 2000.

[Cla02] Clavel, M., Durán, F., Eker, S., Lincoln, P.,
Martí-Oliet, N., Meseguer, J., Quesada, J.F.
Maude: specification and programming in

rewriting logic. Theoretical Computer Science,
285(2):187-243, 2002.

[Cli] Clips documentation. http://www.cis.ksu.edu/
VirtualHelp/Info/clips.html

[Coo04] Cook, S. Domain-Specific Modeling and
Model Driven Architecture, MDA Journal,
January 2004

[Cza00] Czarnecki, K. and Eisenecker, U.W.
Generative Programming: Methods, Tools, and
Applications. Addison Wesley, Boston, 2000.

[Cza03] Czarnecki, K., Helsen, S. Classification of
Model Transformation Approaches. In
Proceedings OOPSLA’03 Workshop on
Generative Techniques in the Context of Model-
Driven Architecture, 2003.

[Ehr85] Ehrig, H., Mahr, B.: Fundamentals of
Algebraic Specification 1. Springer-Verlag Berlin
Heidelberg New York Tokio (1985). ISBN: 3-
540-13718-1.

[Fsh] Fsharp home page. http://research.microsoft.
com/ projects/ilx/fsharp.aspx

[Got94] Gotel, O. C. Z., Finkelstein, A. C. W. An
Analysis of the Requirements Traceability
Problem. In Proceedings of First International
Conference on Requirements Engineering
(ICRE). Colorado, USA. 1994.

[Rat] Rational Rose XDE Developer. http://www-
306.ibm.com/software/awdtools/developer/rosexd
e/

[Rea93] Reade, C. Elements of Functional
Programming. Addison-Wesley, 1993.

[Sel03] Selic, B.: The Pragmatics of Model-Driven
Development. IEEE Software, ISSN 0740-7459.
September 2003, pp. 19-25.

[Sen03] Sendall, S., Kozaczynski, W. Model
Transformation: The Heart and Soul of Model-
Driven Software Development. IEEE Software.
September/October 2003 (Vol. 20, No. 5), pp. 42-
45.

[Sym01] Syme, D. ILX: Extending the .NET
Common IL for Functional Language
Interoperability. In Proceedings of Workshop
Babel 01, Florence, Italy. September 2001.

[Wid04] Wideman G., Microsoft Visio 2003
Developer’s Survival Pack, 2004.

[W3C] W3C, Resource Description Framework
(RDF), http://www.w3.org/RDF/

[Yu04] Yu, D., Kennedy, A., Syme, D..
Formalization of Generics for the .NET Common
Language Runtime. In Proceedings of the 31st
ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages (POPL),
Venice, Italy, January 2004.

