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ABSTRACT 
Model-Driven Development is a suitable approach for improving productivity and quality in the software 
development process by raising the level of abstraction of software artifacts from code to models. In this 
context, code generation has traditionally been the star feature. Working on models also provides more reusable 
solutions to problems that have to be solved in an ad-hoc manner using the .NET technology: interoperability 
between applications, integration of applications, legacy system recovery, software evolution, maintainability, 
etc. One mechanism for dealing with models is model transformation. Although several tools follow this 
approach to generate code that targets the .NET platform, there are no tools based on .NET technology that 
provide model manipulation such as transformations. In this paper, we present a platform that permits the formal 
representation of models and an operator to transform models in a declarative way. This platform has been 
implemented using the F# functional programming language, presenting its advantages over an implementation 
using an imperative programming language such as C#. The platform has been integrated into the Visio 
modeling environment by means of an add-in to deal with formal models through visual metaphors (visual 
notation). To our knowledge, this solution is the first approach for dealing with cross-model semantic 
interoperability on the .NET technology. 

Keywords 
Model-driven development, model transformation, graphical notation, MS Visio 2003, F#, Office managed 
COM add-in, cross-language interoperability. 

 

1. INTRODUCTION 
Model-Driven Development (MDD for short) 
[Sel03] is a suitable approach to combat the 
complexity of software development by means of 
principles such as abstraction and modularity, which 
improve the quality, reuse, and scalability of 
software artifacts. This discipline also improves the 
productivity and quality in the software development 
process to obtain automatically error-free code that is 
easy to maintain. Following this approach, a software 
artifact is modeled at a high level of abstraction 

where technical details are not as important as 
semantics. The structure and semantics of a software 
artifact are modeled by using an ontology or 
metamodel (a vocabulary that provides constructs to 
specify a model in a determined manner). A 
metamodel can be domain-independent such as 
UML, or domain-specific, taking into account 
specific types of software systems, such as banks, 
electronical circuits, business modeling, etc. 
In accordance with [Cza00], the MDD approach 
based on UML-like metamodels is called Object-
Oriented Analysis and Design, while the MDD 
approach based on domain-specific metamodels is 
called Domain Engineering. Microsoft has shown a 
growing interest in the MDD discipline by adding 
designers to the Visual Studio environment in order 
to build software artifacts by means of models. This 
technology should be expanded to cover domains of 
interest to their customers, such as code 
visualization, business modeling, etc., thereby 
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applying Domain Engineering from a commercial 
standpoint [Coo04]. 
In MDD, models defined by means of metamodels 
are usually transformed into code, providing the final 
application that can be directly compiled and 
executed on a specific platform, such as .NET. There 
are lots of tools that provide code generation based 
on models in the .NET world, called model 
compilers: from visual modeling environments (such 
as Visio, Rational XDE [Rat] among others) to 
development environments (such as the Visual 
Studio .NET).  
However, generating code from models forces the 
programmer to work on code in order to face well-
known problems in the software engineering field: 
round-trip, application integration, legacy system 
recovery, refactorization, software evolution, 
maintainability, etc. These problems can be solved at 
a more abstract level by dealing with models directly, 
obtaining the same advantages that the MDD 
discipline obtains for the software development 
process. This is the point where model 
transformations come into play [Sen03]. To provide 
support for model transformations, two main issues 
have to be taken into account: model representation 
to structure the information in some accessible 
manner and a transformation mechanism to 
manipulate such models. Although this issue is 
becoming well-known in the research field [Cza03], 
to our knowledge, there are no tools based on the 
.NET technology to achieve transformations of this 
kind. A solution of this nature would improve the 
productivity and the quality in the integration of 
.NET-based applications at a high level of 
abstraction, rather than just benefiting from the 
cross-language interoperability that the .NET 
Framework provides at code level. Therefore, a 
solution of this nature would achieve cross-model 
interoperability. 
In this paper, we provide a solution along these lines. 
We present a mechanism that takes advantage of the 
MS Visio modeling tool in order to describe the 
structure of visual models in a formal manner. This 
mechanism uses a platform to represent and store 
software artifacts in four layers, where metamodels 
and models are taken into account. Models defined 
on the platform can be transformed in a declarative 
fashion by using the platform operator generate, 
which permits the translation of a model between 
different metamodels. 
This platform has been developed using the 
functional language F# [Fsh]. Taking into account its 
advantages over conventional OO languages such as 
C#, models are formally described in an algebraic 
fashion. 

Our solution takes advantage of the .NET cross-
language interoperability and the Office extension 
mechanism by means of managed COM add-ins. It 
extends the Visio tool by using the most suitable 
language in each context: F# to implement the 
definition of formal models and their manipulation, 
and C# to integrate this functionality into the Visio 
tool.  
The structure of the paper is as follows: in Section 2, 
we discuss and compare the C# and F# programming 
languages, evaluating their suitability in our solution; 
Section 3 presents a platform that enables the 
definition of models in an algebraic fashion; Section 
4 presents the add-in that integrates this platform into 
the Visio modeling environment, enabling the 
manipulation of formal models by means of 
graphical metaphors (graphical notation); Section 5 
describes the F# definition of the model 
transformation mechanism that is provided by the 
platform; finally, Section 6 summarizes our 
contributions. 

2. F# versus C# 
F# is a functional programming language that targets 
the .NET platform. F# has been developed at MS 
Research Cambridge and is a version of the Caml 
programming language [Cah00], which belongs to 
the ML languages family. F# is well integrated in the 
Visual Studio environment1 and provides certain 
features that are inherited from Caml, which make it 
interesting for our purposes. 

F# is based on the lambda-calculus model [Rea93] 
by means of a strict (eager) evaluation strategy. 
Therefore, it permits the definition of a program 
independently from the evaluation strategy used, that 
is without mixing functionality and control logic as is 
necessary in C#.  

F# provides richer constructs to declare types like 
sum types, among others. A sum type permits the 
definition of a type by means of constructor patterns, 
each of which may have arguments. Sum types allow 
us to describe the signature of an algebraic 
specification [Ehr85], where the name of the type is 
the sort, and the constructor patterns are the 
constructors of a sort. This comparison allows us to 
deal with models from an algebraic point of view, 
where semantics of models can be described formally 
by means of Abtract Data Types. This feature is not 
feasible in C# intuitively, although it can be 
simulated in the same way that such constructors are 
invoked from C# code by means of static methods. 

                                                           
1 Although we used  F# version 0.6.4.1 for this solution. 



F# provides a conditional pattern matching 
mechanism that enables the definition of functions 
over sum types in an intuitive way by applying a 
pattern to each constructor in order to perform a task. 
This mechanism can be simulated in a more complex 
way in C# by means of the switch statement and the 
addition of if statements inside each case of the 
switch statement. 

The F# compiler infers the types of the declaration of 
a function statically (the types of its arguments and 
the type of its closure, i.e. the type of the returned 
value), so that these types do not have to be indicated 
in the definition of the function. This feature makes 
the definition of F# programs easier. 

As all values are functions in F#, we can use lists of 
functions whenever we need them, rather than using 
delegates, as it happens in C#. This also provides 
parametric polymorphism that is used to provide 
some parametric functions that deal with lists without 
knowing the types of their elements: map to apply a 
function to the elements of a list, find to search the 
elements of a list that validate a condition, exists to 
know if some elements of a list validate a condition, 
etc. This feature, called generics, has not been added 
to the current release of the .NET Framework, 
although it will be added to the next release [Yu04]. 

Although F# is a functional language, it also 
provides imperative features such as references 
(pointer to a value), which allow us to manipulate the 
memory state whenever necessary for the sake of 
efficiency. Furthermore, the last and the most 
important feature of F# is its full interoperability 
with languages that target the .NET platform, such as 
C#, by means of the ILX extensions [Sym01] to the 
IL language. 

All these considerations have encouraged us to use 
F# for the implementation of our solution to deal 
with models from a formal standpoint, on the 
grounds that we can use C# to integrate our solution 
to tools based on the .NET technology, such as the 
Visio modeling environment. 

3. ALGEBRAIC REPRESENTATION 
OF MODELS BY MEANS OF F# 
Our approach constitutes a platform that uses several 
metadata layers to describe any kind of information. 
In our work, we consider software artifacts in four 
abstract layers (as shown in Figure 1): 
− The M0-layer collects the examples of all the 

models, i.e., it holds the information that is 
described by a data model of the M1-layer. 

− The M1-layer contains the metadata that describes 
data in the M0-layer and aggregates it by means of 

models. This layer provides services to collect 
examples of a reality in the lowest layer. 

− The M2-layer contains the descriptions 
(metamodels) that define the structure and 
semantics of the models located at the M1-layer. 
A metamodel is an “abstract language” that 
describes different kinds of data.  

− The M3-layer is the platform core, containing 
services to specify any metamodel with the same 
common representation mechanism. It is the most 
abstract layer in the platform. It contains the 
description of the structure and the semantics for 
metamodels. This layer provides the “abstract 
language” to define different kinds of metadata. 

The core of the prototype is an algebra that provides 
a set of sorts and constructors to define models and a 
set of operators to manipulate them. To implement 
this algebra, we have used the F# programming 
language for two main reasons: to bring a formal 
model transformation approach closer to an industrial 
programming environment, such as .NET, and to 
benefit from the functional programming advantages 
presented above.  
 
 
 
 
 
 
 
 
 

Figure 1. Graphical representation of the four-
layered platform. 

An Algebra for Representing Models 
The algebra aims to represent models of any kind as 
algebraic terms in order to automate model 
transformation tasks in a precise, formal way. 
Achieving this objective implies choosing a basic 
specification language that permits us to describe any 
piece of data. 
We have developed a platform based on this algebra 
that permits the representation of software artifacts in 
the four meta-layers explained above. Four main 
sorts permit the definition of a model as a term in the 
algebra: 
1. Concept 

A concept represents an entity that can be 
described by means of properties. The constructor 
of this sort is defined in F# notation as follows: 
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where NilConcept represents a null concept term; 
the first argument of the constructor Concept is a 
term of the sort Concept that represents its 
metaconcept in the next upper abstraction layer, 
and the second argument is its identifier.  

2. Property 
A property is a relationship that relates either a 
concept or a property (subject of the property) to a 
concept (the object of the property), following the 
RDF philosophy to describe metadata [W3C]. 
Such relationships are specified by means of the 
Property sort.  

We express the constructor of this sort in F# 
notation as follows: 

 
 
 
 

where NilProperty represents the null property term 
and the arguments of the constructor Property are the 
following elements in order of appearance: 

− Parent property indicating its type. 
− Identifier of the property. 
− Minimum cardinality of the property that 

indicates the minimum amount of instances of 
the range concept, which must be related to the 
subject node. 

− Maximum cardinality of the property that 
indicates the maximum amount of instances of 
the range concept that can be related to the 
subject node. 

− Subject element that receives the property. This 
can be a concept or another property, because a 
property may involve other properties.  

− Object element that constitutes the value of the 
property. A property cannot be the object of 
another property on the grounds that it does not 
provide additional information. 

3. Schema 
In our context, a schema term represents a 
collection of concepts and properties that describe 
such concepts. 

4. Level 
A level term represents a layer in the platform. 
Four terms of this sort constitute the four-layer 
structure of the platform. The term M3-layer 
represents the most abstract layer in the platform 
and contains a basic vocabulary to define 
metamodels at the M2-layer, i.e. a simplified 
meta-metamodel. This schema contains the term 
Concept and the term Property; the latter relates 
two concept terms, constituting the minimal 
structure that we use to represent a model at a 
lower layer. The four layers of the platform are 
defined as values that can be accessed by means 
of references (pointers to a value). This simplifies 

the definition of transformation rules and 
enhances efficiency. 

For instance, the Relational Metamodel is a schema 
term that contains the concepts and properties that 
constitute the terminology to define a relational 
schema, as shown in Figure 2. For instance, Table 
and Column are represented by means of concept 
terms, which are related to each other through a 
property table/Column in the relational metamodel at 
the M2-layer. This metamodel allows the definition 
of the concept Invoice as a table. In an identical way, 
the concept Code is defined as a column, which is 
related to the table Invoice by means of an instance 
of the property table/Column, i.e. by means of the 
invoice/Code property. 
 
 
 
 
 
 
 
 
Figure 2. Definition of metamodels and models on 

the platform. 

4. VISIO AS A VISUAL 
ENVIRONMENT FOR DEALING 
WITH ALGEBRAIC MODELS 
Taking into account the four-layered platform based 
on the functional implementation of the presented 
algebra, we have developed an add-in for MS Visio 
2003, called Platform Integrator. This add-in permits 
the association of a graphic metaphor with a formal 
metamodel in the Visio modelling environment and 
the automatic definition of its models as algebraic 
terms. 
The customization of the Visio modeling visual 
environment is performed by means of add-ons, i.e. 
sets of stencils that provide the graphical information 
needed to define the graphical notation for a 
metamodel. To extend the tool, a type of module, 
called an add-in, is used to add functionality. Given 
the easy extension that such add-ins provide by 
means of managed COM (Component Object 
Model), Visio is the selected tool to embed our 
model repository. The formal definition of models, 
which  our add-in provides, allows us to transform 
models as we present in the following section, rather 
than merely defining the models graphically. 
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Outside the Add-in 
The add-in architecture is divided into three layers: 
the interface that graphically represents metamodels 
and models; the middle layer that permits the 
association of such graphics to algebraic 
representation of models; and the persistence layer 
that stores all the information. 
In the middle layer, the module Platform Integrator 
enables the definition of associations between the 
graphical elements of the interface of Visio and the 
algebraic terms that define software artifacts in the 
four-layered platform. Such associations are stored in 
the same platform as instances of UML classes at the 
M0-layer by means of the UMLSupport library. 
The persistence layer consists of two types of storage 
units: the one provided by Visio and the one 
provided by model repository of the platform. 
In Visio, graphical models are stored by means of 
two types of files: .vss files that store the model 
defined in the shapesheet, and .vst files that provide 
the templates with masters (stencils), which enable 
the definition of shapes in the shapesheet. Visio 
provides several templates with several kinds of 
masters to define a large variety of models by 
default. Nevertheless, a user can define new 
templates to define other types of models. 
The four-layered platform stores the information in a 
RDF repository on the grounds that the concepts and 
properties used in the platform are equivalent to RDF 
resources and properties, respectively. The repository 
used is Redland [Bec01], which we have embedded 
in a visual studio project and compiled on the .NET 
platform by means of the managed C++ 
programming language. In this repository, we store 
schemas that belong to any layer of the platform, and 
we store associations between graphical elements of 
the modeling environment and algebra terms.  

Inside the Add-in 
The graphical elements of the Visio interface are 
related to platform elements by means of the module 
Platform Integrator. To present both the definition of 
a graphical metaphor related to a metamodel and the 
definition of formal models by means of this 
association, we focus on the M2-layer and the M1-
layer of the platform. These layers store information 
of metamodels and models, respectively. In this way, 
a schema of the M2-layer is related to a Visio stencil, 
while a schema of the M1-layer is related to a Visio 
shapesheet. To graphically represent the concepts 
and the properties that constitute a metamodel at the 
M2-layer, we use the masters that define the chosen 
stencil. In the case of the graphical representation of 
elements that constitute a model at the M1-layer, we 

use shapes that are defined by means of masters of a 
stencil. 
The association mechanism that relates a formal 
model to a graphical representation has been 
modelled in Figure 3 using UML notation. In this 
model, the SchemaWrapper class contains the 
information needed to relate a schema to its visual 
representation, while the class NodeWrapper 
contains the information that relates a concept or a 
property to a specific image. Specializations of both 
classes identify whether a schema is a metamodel 
(GraphicViewWrapper) or a model 
(GraphicModelWrapper), and whether either a 
concept or a property is a metamodel element 
(GraphicPrimitiveWrapper) or a model element 
(PictureWrapper). In the case of a metamodel, an 
instance of the GraphicViewWrapper class relates a 
schema of the M2-layer to a stencil, and an instance 
of GraphicPrimitiveWrapper class relates a node of 
the schema to a master. In the case of a model, an 
instance of the GraphicModelWrapper class relates a 
schema of the M1-layer to a shapesheet, and an 
instance of the PictureWrapper class relates a node 
of the schema to a shape. 

Storage of UML Software Artifacts 
The association between Visio graphical elements 
and platform elements (defined in the UML class 
diagram in Figure 3) is stored in the same four-
layered platform. In this way, the platform is used as 
an object-oriented repository on the grounds that it 
enables both the definition of UML models at the 
M1-layer and the definition of their instances at the 
M0-layer.  
 
 
 
 
 
 
 
 
 

Figure 3. UML Model of the association 
mechanism between graphical elements and 

algebraic terms. 
To achieve this, we have specified part of the UML 
metamodel as a schema at the M2-layer of the 
platform, taking into account classes and 
associations. The class diagram in Figure 3 has been 
specified in a schema at the M1-layer of the platform 
as an instance of this UML metamodel. Therefore, to 
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define associations between elements of the platform 
and Visio graphical elements, a schema can be 
defined at the M0-layer of the platform by 
instantiating the classes that constitute the model at 
the M1-layer. 

Definition of Graphic Metaphors for 
Metamodels 
To define a metamodel by means of Visio, we 
associate a schema of the M2-layer of the platform to 
a stencil. Then, each of its masters is related to a 
node of the schema by means of the interface in 
Figure 4, completing the graphical metaphor related 
to the metamodel. The formal metamodel can be 
directly defined on the platform by means of the 
Visio interface; it can also be loaded from the 
platform. 
To define a master in the interface shown in the 
Figure, an association between a metamodel of the 
platform and a stencil must be selected. Then, a 
master of the stencil and a node of the schema are 
selected and related by means of a new association. 
After this, the hidden properties of a node (i.e. the 
properties that are not related to a master directly) 
can be accessed. They are shown in the list that 
appears at the bottom of the interface, and they can 
also be navigated recursively by means of the tree, 
placed on the left part of the interface. 
Once a metamodel is graphically defined in Visio, it 
can be used to define visual models by means of the 
drag-and-drop mechanism, by dropping masters of 
the stencil onto the shapesheet. We enrich this 
mechanism so that the shape is not only graphically 
defined in the shapesheet but also its contents are 
defined in the platform. This functionality is 
embedded in the Platform Integrator module, 
providing this functionality automatically in a 
transparent manner to the user. Thereby, we not only 
define a graphical model but also provide the 
semantic information related to a metamodel. 

Therefore, we can define formal models in a visual 
manner so that they can be manipulated by means of 
transformations as we explain in Section 5. 

5. TRANSFORMATIONS 
The operator generate permits the translation of a 
model of a specific metamodel into a model of a 
different metamodel. The semantics of the operator is 
defined denotationally by means of the pattern 
matching mechanism of F#. 
The operation generate defines an evaluation 
strategy operationally (by means of the pattern 
matching mechanism) in order to enable the 
definition of transformation rules in a declarative 
manner. In this way, transformation rules are defined 
like axioms that do not take into account the rule 
evaluation strategy embedded in the operator 
generate. In this section, we introduce the likeness 
relation2, which enables the definition of 
transformation rules based on metamodels. Then, we 
describe the structure of a transformation rule. 
Finally, we define the operational semantics of the 
operator generate. 

Semantical Relationships between 
Metamodels 
In our approach, transformations are based on 
metamodels. Applying a transformation to a source 
model involves two metamodels: a source metamodel 
that describes the structure and semantics of the 
source model, and a target metamodel that provides 
the structure and semantics for the new model to be 
generated. Two types of transformations can be 
distinguished taking into account the target 
metamodel: 

                                                           
2 We have chosen the name likeness instead of 

equivalence, on the grounds that the equivalence relation 
is defined between elements of different metamodels, 
which cannot be equal. 

Figure 4. Interface to graphically define concepts and properties of a metamodel. 



− Intra-metamodel: when both the target and the 
source metamodels are the same. In this paper, 
we do not discuss this type of transformation. 

− Inter-metamodel: when both the target and the 
source metamodels are different. 

By basing our transformations on metamodels, we 
can specify them from an abstract point of view 
taking into account the metainformation that 
constitutes both the source and the target 
metamodels. This way, transformation rules can be 
viewed as patterns that can apply to any model of the 
source metamodel. To define such rules, we 
introduce the likeness relation between elements of 
two metamodels. 
The likeness relation is based on mappings between 
the elements of both the source and the target 
metamodels. A mapping is a property that is an 
instance of a property, called Likeness, defined at the 
M3-layer. A mapping relates a concept of the source 
metamodel to a concept of the target metamodel. For 
example, indicating that a Table in the relational 
metamodel is like a Class in the UML metamodel. A 
set of mappings conforms a likeness relationship 
indicating that the concepts, which participate in 
these mappings, represent a similar semantic 
meaning in their respective metamodels. 
A likeness relationship between elements of two 
metamodels may involve more than one element of 
either the source or the target metamodels. Thus, we 
distinguish between: 
− Simple likeness relationships: specified by means 

of only one mapping. 
− Complex likeness relationships: specified by a set 

of mappings involving several elements from 
either the source or the target metamodels. For 
example, to define an equivalence relationship 
between a foreign key of the relational 
metamodel and an aggregation of the UML 
metamodel, we have to relate the foreign key, the 
unique constraint and the not null value constraint 
concepts to the aggregation concept. This is 
because these three concepts of the relational 
metamodel provide the necessary knowledge to 
define an aggregation between two classes in the 
UML metamodel, such as the cardinalities of the 
aggregation. 

A likeness relation between two metamodels is 
defined as the union of all likeness relationships 
established between the elements of both 
metamodels. As a first approach to provide cross-
model semantic interoperability on the .NET 
platform, we only focus on simple likeness 
relationships. 

Transformation Rules 
The operator generate is applied to a schema of the 
source metamodel and defines a new schema of the 
target metamodel. To achieve the transformation, this 
operator is based on a likeness relation defined 
between both the source and the target metamodels. 
By means of this relation, the operator knows what 
should be generated from a set of concepts of a 
source model. 
To process the elements of the source schema, the 
operator generate makes use of transformation rules 
defined declaratively. Each one of them is divided 
into two functions: a condition and a body. When a 
group of elements of the source model is processed, 
the condition checks their properties in order to 
select which generation function should be applied. 
These conditions take into account the order of 
precedence that exists between the concepts of a 
specific metamodel when this order is used to define 
a model. For instance, when we define a relational 
schema, we cannot define a column if the table that it 
belongs to is not defined previously. On the other 
hand, the body of the transformation rule involves 
the definition of concepts and properties in the target 
schema. 
The operator generate automatically generates 
models among different metamodels taking into 
account a set of transformation rules, which are 
applied following a specific evaluation strategy. The 
set of transformation rules is defined independently 
of the evaluation strategy chosen. To achieve this 
issue, all the transformation rules must have the same 
declaration so that the operator generate knows how 
to apply them. By declaration, we mean the 
declaration expression of a function in a F# interface 
(.mli), which involves the symbol that identifies the 
function value, the types of the arguments and the 
type of the function value (i.e. the type of the 
closure). Therefore, we denote the declaration 
expression of a function as follows: 
 
 
 
This is the value declaration inferred statically by the 
compiler where val is a reserved construct that 
indicates the declaration of a value; function_name is 
the symbol that identifies the function; arg1_type -> 
… -> argn_type are the types of the argument list of 
the function; and closure_type is the type of the 
closure (which is viewed as the type of the returned 
value in imperative programming). 
As a transformation rule is divided into a condition 
function and a body function, we present their 
declarations in the following subsections. 

val function_name :  
 arg1_type -> … -> argn_type  
-> closure_type 



5.1.1 Condition function 
A condition function is the mechanism that indicates 
when a transformation rule can be applied. There is 
one, and only one, condition function for each 
function body. This means that a condition can 
indicate the suitability of only one transformation 
rule in a specific context, although many 
transformation rules can be applied to the same 
group of elements of a source model. The declaration 
expression for a condition function is as follows: 
 
 
where condition_name is a symbol that identifies the 
condition, the first argument is the source schema to 
be translated, and the second argument is the current 
node of the source schema to be translated. 
The condition function checks wheter or not the 
specified node validates a set of requirements in 
order to determine if it can be translated into the 
target schema by means of the body function of the 
transformation rule. Finally, the closure of the 
condition function is a Boolean value indicating the 
suitability of the transformation rule that contains the 
condition. 

5.1.2 Body function 
The body function of a transformation rule 
materializes a likeness relationship, defined between 
elements of both the source and the target 
metamodels. This materialization involves both the 
definition of new elements into the target schema and 
specific mappings between the elements of the 
source schema, which are involved in the 
transformation rule. Such mappings provide support 
for traceability. Given a transformation process 
between two models, traceability [Got94] enables the 
identification of elements that are related by means 
of the application of a transformation rule and that 
belong to different models. Traceability support 
enhances mechanisms such as change propagation 
and round-trip between models.  
To explain the semantics of the operator generate, 
we use the generation of a UML model from a 
relational schema as an example. The materialization 
of a likeness relationship at the M1-layer (between 
models) is obtained by four steps, shown in Figure 5: 
1. The concept is reified in its metaconcept; that is, if 

the concept to be processed is the table Invoice, 
we obtain the metaconcepts Table of the relational 
metamodel. 

2. Once we know the corresponding metaconcept of 
the source metamodel, we navigate the likeness 
relationship that relates it to a concept of the target 
metamodel. In the case of a table of the Relational 

Metamodel, we obtain the concept Class of the 
OO Metamodel. 

3. The operator generate instantiates the concept of 
the target metamodel, which becomes a 
metaconcept for its instance, i.e., the concept 
Class of the OO metamodel becomes the 
metaconcept for its instance OO-Invoice. The new 
concept, which has been generated in the new 
target schema at the M1-layer, is similar to the 
original concept in step 1, through the likeness 
relationship that we have defined before. 

4. Finally, the operator instantiates the likeness 
relationship defined at the M2-layer between the 
Metaconcept of the source Concept and the 
Metaconcept’ of the new generated Concept’. The 
instantiation defines a new mapping in the 
traceability schema at the M1-layer, which is a 
property that has the source Concept as domain 
and the target Concept’ as range. 

 
 
 
 
 
 
 
 
 

Figure 5. Description of the transformation 
process 

The declaration of a body function is as follows: 
 
 
where body_name is the symbol that identifies the 
body function, the first argument is a schema that 
contains the specific mappings between elements of 
both the source and the target models, and a node is 
the element of the source model to be translated. A 
body function knows the source and the target 
models by means of the mapping schema, which 
contains this information. 
The type of the closure of a body function applied to 
a mapping schema and a node is the unit type3. A 
body function carries out side effects by accessing 
the layers of the platform (term of type Level) by 
means of references to them. Although these side 
effects decrease the level of abstraction of our 
functional approach, they avoid having to pass a 
whole layer as an argument for each transformation 
rule in order to improve efficiency. Side effects 
                                                           
3 This type describes a set which possesses only a single 

element, which is denoted by (). This means that this 
function simulates the notion of procedure, just as the 
type void does in the C language. 

val condition_name : Schema -> Node  
-> bool 

val body_name : Schema -> Node  
-> unit 
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produced by a body function involve the insertion of 
new elements into the target schema and new 
mappings into the mapping schema, both of which 
are located at the M1-layer. To understand the 
application of a transformation rule in more detail see 
[Bor04]. 

The Operator generate 
The operator generate carries out the evaluation of a 
set of transformation rules on a source model, which 
is defined at the M1-layer of the platform. This 
obtains a new target model and a traceability model 
between the elements of the source models and the 
elements of the new  generated model. The generated 
models are also defined at the M1-layer, as shown in 
Figure 5. The operator generate is a function whose 
declaration is as follows: 
 
 
 
where the first argument is a list of pairs of functions, 
in which the first element is a condition function and 
the second is a body function (i.e. each pair is a 
transformation rule); the second argument is the 
name of the source model placed at the M1-layer; the 
third argument is the name of the schema that 
contains the likeness relationship between the source 
and the target metamodels (i.e. the schema that 
provides the likeness relation); and the fourth is the 
name of the new target schema to be generated. This 
function returns a Boolean value indicating whether 
or not the model transformation has been performed 
correctly. 
The evaluation process carried out by the operator 
generate is split into three steps: initialization of new 
schemas at the M1-layer, solution search, and 
transformation. 
First, the operator defines two empty schemas at the 
M1-layer of the platform: 
− Definition of the traceability model.  
− Definition of an empty target schema as instance 

of the target metamodel with the name specified 
as the fourth argument. The target metamodel is 
known by means of the model of likeness 
mappings of the M2-layer, which is specified as 
the third argument. 

Second, the operator searches for a solution for the 
source model transformation. This solution consists 
of a list of ordered nodes of the source model. The 
application of transformation rules to the ordered 
nodes produces the target schema. This step is 
needed because F# does not provide any mechanism 
to support the evaluation of the nodes of a schema in 
an automated and intuitive way. This inconvenience 

is due to the definition of a schema as a list of nodes, 
or even as a set. In other languages, this problem is 
avoided by means of a backtracking mechanism, 
such as in CLIPS [Cli], or by means of the 
commutativity property, such as in the algebraic 
language Maude [Cla02]. A solution is reached when 
all the nodes of the source model, whose parent 
participates in a likeness relationship in the specified 
likeness relation, have been added to the solution list. 
In the case that no solution is found, the 
transformation process is stopped and the operator 
returns a false value.  
 
 
 
 
 
 
 
 
 

Figure 6. F# definition of the apply_axiom 
function. 

Last, the list of transformation rules given as first 
argument is applied to the nodes of the solution list 
provided by the second step. The application of 
transformation rules is reached by means of the 
apply_solution function, which uses the pattern 
matching mechanism of the F# programming 
language, as shown in the code in Figure 6. The 
apply_solution function is recursive (indicated by the 
construct rec) and applies the apply_rule function to 
the first node h (head) of the list. This function 
searches for a suitable transformation rule in the list 
by means of its respective condition function, and 
applies the body of the rule to the node h. It inserts a 
set of nodes into the target schema and inserts the 
corresponding mappings into the traceability schema. 
To transform the entire list of nodes of the source 
model, the apply_solution function is applied to the 
rest of nodes of the solution list t (tail) recursively. 
When no node is left, the transformation is 
concluded. 
The function generate produces side effects due to 
the application of transformation rules to the 
elements of the source model. These side effects are 
changes to the state of the M1-layer, which involve 
the addition of the generated target model and the 
traceability model to the M1-layer. 

6. CONCLUSION 
In this paper, we have presented a solution for 
transforming models by means of the Visio modeling 

val generate :  
 (bool * unit) list ->  
 string -> string -> string  
-> bool 

let rec apply_solution list_solution_concepts 
list_transformation_rules sch_m1_source 
sch_m1_mappings = 
 match list_solution_concepts with 
 | [] -> true 
 | h::t -> 
   let _ = apply_axiom  
   list_transformation_rules 
    sch_m1_source sch_m1_mappings h
  in 
   apply_solution t list_transforamtion_rules  
    sch_m1_source sch_m1_mappings 



environment following a MDD approach. To achieve 
this, we built a platform that permits the definition of 
software artifacts following a four-layered approach, 
which involves metamodels and models, from an 
algebraic point of view. The platform provides a 
mechanism to transform models in a declarative way 
between two metamodels. This mechanism is 
embodied by the operator generate that receives a list 
of transformation rules that are applied to a source 
model in order to translate it into a model of a target 
metamodel. The application of a transformation 
provides support for traceability between the source 
model and the generated one. 
The platform has been implemented with the F# 
programming language. We have also discussed its 
advantages over other languages that target the .NET 
platform, such as C#. 
The platform has been integrated into the Visio 
modeling environment by means of an Office 
managed COM add-in. This allows us to deal with 
formal models in a visual manner through graphical 
metaphors. The platform also acts as a repository of 
formal models. This feature has been used to store 
the associations between the graphical elements of 
the Visio interface with the formal definitions stored 
in the platform, in a UML-based manner. 
To our knowledge, this is the first approach to 
support cross-model semantic interoperability from a 
modeling environment based on .NET technology. 
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